101年大學部國際交流甄選專題成果展 **Parameters Study in ICP-CVD for Deposition Rate** of Amorphous Silicon Thin Films B

Researchers: Yi Wen Chen¹, Yu Ting Shao¹ Advisor: Chuan Li¹, J. H. Hsieh²

¹Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan, Taiwan 32001 ²Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei, Taiwan 24301

Abstract

- Amorphous silicon thin films were deposited on glass substrates in an ICP-CVD (inductively coupling plasma) system.
- Testing different process parameters to obtain the maximum deposition rate.
- OES (optical emission spectrometer) were utilize to detect plasma species during deposition.
- Structures of amorphous hydrogenated silicon thin film were examined by XRD and Raman spectrometer.

Figure 2 OES intensities of SiH*, H_{α}^{*} , H_{β}^{*} with H₂ flow rate 100sccm.

Figure 3 OES intensities of SiH^{*}, H_{α}^{*} , H_{β}^{*} with H₂ flow rate 50sccm.

Figure 4 OES intensities of SiH^{*}, H_{α}^{*} , H_{β}^{*} with H_2 flow rate **0sccm**.

Figure 5 OES intensities of SiH* and deposition rate

Raman spectroscopy

Figure 7 Raman spectrometer of amorphous thin films

Conclusion

- H₂ 50sccm led to a higher deposition rates of amorphous Si films by ICP-CVD.
- The maximum deposition rate by ICP-CVD reached 4.57nm/s under H₂ 50sccm and Ar 15sccm and SiH₄ 50sccm.
- All deposited films were amorphous confirmed by XRD and Raman spectroscopy.
- OES data shows that deposition rate was increased by the presence of SiH* in plasma with appropriate supply of H₂ flow rate.