|
|
¤¤¤åºKn¡G | |
¥»¬ã¨s¥D¦®¦b±´°Q¤£¦PÀô¹Ò°Ñ¼Æ¹ï¤£¦P¼ö³B²zª¬ºA¤UªºCustom
450¤£ù׿û»G»k¯h³Ò©Ê½è¤§¼vÅT¡A±´°QªºÀô¹Ò°Ñ¼Æ¥]¬AÆQ¤ô·»²G¤§»ÄÆP«×¡B·Å«×¤Î´âÂ÷¤l¿@«×¡C¤ñ¸û¤TºØ¼ö³B²zª¬ºA¦bªÅ®ð¤Î¥|ºØÆQ¤ô·»²G¤¤¤§°ª¶g¯h³Ò¤Î¯h³ÒµõÁ_¦¨ªøªº®t²§©Ê¡A¨Ã¥H¹q¤Æ¾Ç¸ÕÅçÆ[´ú¦b¤£¦PÀô¹Ò¤U¨ä¹q¤Æ¾Ç¦æ¬°¤§ÅܤƱ¡§Î¡C¦¹¥~¡A¥ç§Q¥Î±½´y¦¡¹q¤lÅã·LÃè(SEM)Æ[¹î¯h³Ò¯}Â_±¡A¥H¤F¸ÑµõÁ_ªº¥Í¦¨¤Î¦¨ªø¼Ò¦¡¡C ¹êÅçµ²ªGÅã¥Ü¡ACustom
450¤£ù׿û¦bªÅ®ð¤Î¥|ºØÆQ¤ô·»²G¤¤¤§°ª¶g¯h³Ò¦æ¬°¡A¬Ò¬°H900³»®É®Ä³B²z¤ñH1150¹L®É®Ä³B²z¨ã¦³¸ûªø¤§¯h³Ò¹Ø©R¡ASA©T·»³B²z¤¶©ó¨âªÌ¤§¶¡¡C¦Ó¦bªøµõÁ_¦¨ªø¹êÅç(stage
II)¤è±¡AH900³»®É®Ä³B²z¬Ò¤ñH1150¹L®É®Ä³B²z¨ã¦³¸û§Ö¤§µõÁ_¦¨ªø³t²v¡ASA©T·»³B²z¤¶©ó¨âªÌ¤§¶¡¡C¥Ñ¦¹Åã¥Ü¨ä°ª¶g¯h³Ò¹Ø©R¥Dnªá¦bµõÁ_°_©l¶¥¬q¡A¦Ó¤£¦bµõÁ_©µ¦ù¶¥¬q¡C ´N¦P¤@ºØ¼ö³B²zªº°ª¶g¯h³Ò¦Ó¨¥¡A¦b¥|ºØÆQ¤ô·»²G¤¤¤§¾ãÅé¯h³Ò¹Ø©R¬Ò©úÅã¤ñªÅ®ð¤¤¨Óªºµu¡A¦ý¹ïªøµõÁ_¦¨ªø¦Ó¨¥¡A¦b«Ç·Åªº¤GºØÆQ¤ô·»²G¤¤¤ÎªÅ®ð¤¤¤§µõÁ_¦¨ªø³t²v«o¬Û®t¤£¤j¡A¥Ñ¦¹Åã¥Ü¨ä¾ãÅé¯h³Ò¹Ø©R¤U°ªº¥D¦]¬°ÆQ¤ô·»²GÁYµu¤F¯h³ÒµõÁ_°_©l©Ò»Ýªº®É¶¡¡C°§CÆQ¤ô·»²GªºpHÈ·|¨Ï´âÂ÷¤l¬¡©Ê¼W¥[¦Ó¾ÉP»G»k³t²v¤W¤É¡A¶i¦Ó¥[¼@»k¤Õªº¥Í¦¨¨ÃÁYµuµõÁ_°_©l©Ò»Ý®É¶¡¡A¦]¦¹¹ï¾ãÅé¯h³Ò¹Ø©R¦³«Ü¤j¤§¼vÅT¡A¦ý¹ïªøµõÁ_¦¨ªøªº¼vÅT«h¤£¤j¡A³o¥i¯à¬O¥Ñ©ó¦b»G»k·»²G¤¤¤§µõÁ_¦yºÝ¦Û¦æ»Ä¤Æ©Ò³y¦¨¡C ¹ïµõÁ_¦¨ªø¦Ó¨¥¡A´£°ª·»²G·Å«×·|¼W¥[µõÁ_¤§ªí±¬¡¤Æ¯à¥H¤Î»G»k³t²v¡A¨Ã«P¨Ï²B¯Ü¤§µo¥Í¡A¦]¦¹·|©úÅã´£¤ÉªøµõÁ_¤§¦¨ªø³t²v¡C¦Ó´£°ª´âÂ÷¤l¿@«×·|¨Ï»G»k³t²v¤W¤É¡A¹ïµõÁ_¦¨ªø¤]¦³¤£§Q¤§¼vÅT¡C¦Ó¦b°ª¶g¯h³Ò¤è±¡A´£°ª·»²G·Å«×©Î´âÂ÷¤l¿@«×¡A¬Ò¹ï§÷®Æ¤§¶w¤Æ¦æ¬°¦³¤£§Q¼vÅT¡A¨Ã¨Ï»G»k§ÎºA¶É¦V§¡¤Ã»G»k¡A¦ý¤Ï¦Ó´î§C¤F¦]¤Õ»k©Ò²£¥Í¤§À³¤O¶°¤¤®ÄÀ³¡A¦]¦¹¹ï¾ãÅé¯h³Ò¹Ø©Rªº¼vÅT¸û¤p¡C ¥ÑSEMÆ[¹î¤¤±oª¾¡AªÅ®ð¤¤¤§¯h³ÒµõÁ_°_©l³B³q±`¥Ñ¶ì©ÊÅܧΩҳy¦¨¡A¥B¸ûÃø¿ëÃѨä©ú½T¤§°_©l¦ì¸m¡A¦Ó¦b»G»kÀô¹Ò¤¤¤§µõÁ_¤j¦h±q»k¤Õ³B©Î¦]»G»k§@¥Îl¥Í¤§ªí±¯Ê¤f°_©l¡A¦ý¦³®É¤]·|¥Ñ¤¶¸üª«©P³ò°_©l¡C |
|
Abstract¡G | |
The
aim of this study is to investigate the influence of environmental factors,
including pH value, temperature, and NaCl concentration, on the corrosion
fatigue properties of Custom 450 stainless steels in different heat treatments.
In particular, the high-cycle fatigue (HCF) and fatigue crack growth
(FCG) behavior in air and several salt water environments were made a comparison
for three different tempers, namely solution-annealed (SA), peak-aged (H900),
and overaged (H1150) conditions. The effect of environmentally assisted cracking mechanisms on the
degradation of fatigue resistance was characterized. The electrochemical properties for these tempers in various aqueous
environments were also made a comparison. Fractography and microstructural analyses with scanning electron
microscopy (SEM) were conducted to determine the corrosion fatigue crack
initiation and propagation modes. The environmental effects exerted more detrimental influence on the HCF behavior than on the stage II cracking behavior for the given alloys. A reduction in the pH value of salt water increased the activity of chloride ion and its influence on the crack initiation stage leading to a decrease in fatigue strength. An increase in the temperature of salt water from room temperature to 80¢J caused a remarkable increase in the FCG rate due to the enhanced activation energy of crack growth and diffusion rate of hydrogen which promotes hydrogen embrittlement (HE) effect at the crack tip. In addition, increasing the NaCl concentration of salt water resulted in a slightly higher FCG rate. However, an increase in the temperature or chloride ion concentration of salt water caused negligible effects on the HCF properties for the given alloys. |
|
|