|
|
¤¤¤åºKn¡G | |
¡@ ¥»¬ã¨s°w¹ï¥ªO¦¡©TºA®ñ¤Æª«¿U®Æ¹q¦À³s±µªO¥Î¨â´ÚªÎ²ÉÅK¨t¤£ù׿û(Crofer 22 APU¤ÎCrofer 22 H)¤§¼çÅÜ»P¼ö¾÷¯h³Ò©Ê½è¶i¦æ¤ÀªR¡C°ª·Å©Ô¦ù¸ÕÅç¤À§O¦b«Ç·Å¡B600oC¡B650oC¡B700oC¡B750oC¤Î800oCªº·Å«×Àô¹Ò¤¤¶i¦æ¡A¥H«Ø¥ßCrofer 22 APU©MCrofer 22 H¤£ù׿û¦b¤Wz¤£¦P·Å«×Àô¹Ò¤UªºÀ³¤O¡ÐÀ³ÅÜÃö«Y¡C¦Ó¨â´Ú¤£ù׿û¤§¼çÅܸÕÅç¤À§O¦b650oC¡B700oC¡B750oC¤Î800oC¶i¦æ¡A¥H«Ø¥ß°ò¥»ªº¼çÅÜÀ³ÅÜ¡X®É¶¡¦±½u¤ÎÀ³¤O¡XÂ_µõ®É¶¡¦±½u¡A¨Ã¶i¤@¨B¨D±o¤£¦PÀ³¤O¤U²Ä¤G¶¥¬qªº³Ì¤pÀ³Åܲv¡C¥t¥~¡A¾É¤J´XºØ¹Ø©Rµû¦ô¤ÀªR¼Ò¦¡¡A§ä¥X¼çÅÜÂ_µõ®É¶¡»P¬I¥[À³¤O©Î³Ì¤pÀ³ÅܲvªºÃöÁp©Ê¡A¥H¹w¦ô¨â´Ú¤£ù׿ûªº¼çÅܹةR¡C¨Ã¤ñ¸ûCrofer 22 APU¤ÎCrofer 22 H¨â´Ú¤£ù׿û©Ô¦ù¤Î¼çÅܩʽè¡A¥H¤F¸Ñ¦h²K¥[Nb¤ÎW·L¶q¤¸¯ÀªºCrofer 22 H¿û¹ï©Ô¦ù©Ê½è¤Î¼çÅܾ÷¨î¤§¼vÅT¡C¦¹¥~¡ACrofer 22 H¤£ù׿û¤§²§¬Û¼ö¾÷¯h³Ò¸ÕÅç¦b¶g´Á©Ê·Å«×(25oC-800oC)¤Î²§¬ÛÀ³¤O§@¥Î¤U¶i¦æ¡A¦Ó¼ö¾÷¯h³Ò¡X¼çÅܥ椬§@¥Î¸ÕÅç«h¦b800oC³Ì¤p¬I¥[À³¤Oµ¹¤©ÃB¥~«ù®É100¤p®É¡A¥H±´°QCrofer 22 H¤£ù׿û©ó¥ªO¦¡©TºA®ñ¤Æª«¿U®Æ¹q¦Àªø´Á¹BÂà±ø¥ó¤U¤§@¤[¾÷±ñ¦æ¬°¡A¨Ã©w¶q¤ÀªR¦UºØ·l¶Ë¾÷¨î¹ï¦¹´Ú¤£ù׿û¼ö¾÷¯h³Ò¹Ø©Rªº¼vÅTµ{«×¡C ¬ã¨sµ²ªGÅã¥ÜCrofer 22 APU¿û§÷¤§°¥ñ±j«×ÀH·Å«×ªºÅܤƥiÂÇ¥ÑS«¬Ãö«Y¦¡¦ñÀH¤£¦PÅܧξ÷¨î±o¨ì¤£¿ùªº´yz¡A¨ä°¥ñ±j«×¦b300oC¦Ü500oC¥Dn¬O¨ü¨ì°ª·Å³n¤Æ¤Î°ÊºAÀ³Åܮɮľ÷¨î¼vÅT¡A¦Ó¦b700oC¥H¤W¥Dn¬O¨ü¨ì°ª·Å³n¤Æ¤Î°ÊºAªR¥X¾÷¨îªº¥æ¤¬§@¥Î¡C¦¹¥~¡A®Ú¾Ú¼çÅÜÀ³¤O«ü¼Æ¡B¬¡¤Æ¯à¤Î·Lµ²ºcÆ[¹î¡A±oª¾Crofer 22 APUªº¼çÅÜÅܧξ÷¨î¥Dn¬°ÂX´²±±¨î¤§®t±Æ¼çÅÜ¡A¦ÓCrofer 22 Hªº¼çÅܾ÷¨î¤D¬O®t±Æ¼çÅܦñÀH§Y®ÉªR¥X±j¤Æ®ÄÀ³¡C¤ñ¸û¦¹¨â´Úª÷Äݳs±µªO§÷®Æ¡Aµo²{Crofer 22 H¤ñCrofer 22 APU¦³¸û¨Îªº©Ô¦ù¤Î¼çÅܱj«×¡A¦¹¥iÂk¦]©óCrofer 22 H¿û¤¤Laves¬ÛªºªR¥X±j¤Æ®ÄªG¡C¦ÓLaves¬Ûªº²Ê¤j¤Æ¬°Crofer 22 H¦b800oCªø®É¶¡§CÀ³¤O¤U§Ü¼çÅܯà¤O´î®zªº¥Dnì¦]¡C¦b¼çÅܹةRµû¦ô¤è±¡Aµo²{§Q¥ÎMonkman-GrantÃö«Y¦¡¨Ó´yzCrofer 22 APU¤ÎCrofer 22 H¤§¼çÅܦ欰¦³¬Û·í¤£¿ùªºµ²ªG¡C¥t¥~¡A±N¤£¦P·Å«×¤Uªº¬I¥[À³¤O¥H§Ü©Ô±j«×¥¿³W¤Æ«á¡Aµo²{¥H¦¹¥¿³W¤Æ°Ñ¼Æ¨Ó¹w´ú¨â´Ú¤£ù׿û¼çÅܹةRªºµ²ªG¬Û·í¤£¿ù¡C¦Ó§Q¥ÎLarson-MillerÃö«Y¦¡¨Ó¾ã¦X¨â´Ú¤£ù׿û¤§¼çÅܹةR¡B¬I¥[À³¤O»P·Å«×¤]¦³¤£¿ùªº®ÄªG¡C¦¹¥~¡ACrofer 22 APU¤ÎCrofer 22 H¸Õ¤ù¸g¼çÅܸÕÅç«á¡A¯}Â_±¨ã¦³³\¦h¶´ºÛ¤§©µ©Ê¯}µõ¯S¼x¡C Crofer 22 H¿û¤§¼ö¾÷¯h³Ò¬ã¨sµ²ªGÅã¥Ü¡A¥¼«ù®É¼ö¾÷¯h³Òt²ü¤U´`Àô¹Ø©R¼Æ·|ÀHµÛ800oC¬I¥[À³¤Oªº¼W¥[¦Ó´î¤Ö¡A¦Ó»P«Ç·Å®É¬I¥[À³¤OÈ´X¥GµLÃö¡C¦¹¥~¡A¥¼«ù®É¼ö¾÷¯h³Ò¹Ø©R¥Dn¨ü¨ì¶g´Á©Ê°ª·Å³n¤Æ¶ì©ÊÅܧξ÷¨îªº¼vÅT¡C¦b«ù®É¼ö¾÷¯h³Òt²ü¤è±¡A©ó800oC¬I¥[À³¤O«ù®É100¤p®É·|¾ÉP´`Àô¹Ø©R¼Æ©úÅã´î¤Ö¡A¥DnÂk¦]©ó¯h³Ò»P¼çÅܾ÷¨îªº¥[¼§@¥Î©ÒP¡C¥t¥~¡A«ù®É¼ö¾÷¯h³Ò·l¶Ë¥Dn¬O¥Ñ¼çÅÜ»P¼çÅÜ¡X¯h³Ò¥æ¤¬§@¥Î¨âºØ¾÷¨î©Ò³y¦¨¡A¨ä¤¤ªº¼çÅÜ·l¶Ë¤ñ²v·|ÀHµÛ800oC¬I¥[À³¤O´î¤Ö¦Ó¼W¥[¡A¦ÓÀHµÛ´`Àô¹Ø©R¼Æ¼W¥[¦Ó¤W¤É¡C
¡@ |
|
Abstract¡G | |
Creep and thermo-mechanical fatigue (TMF) properties of newly developed ferritic stainless steels (Crofer 22 APU and Crofer 22 H) are investigated at 25oC-800oC for use in planar solid oxide fuel cell (pSOFC) interconnect. Tensile properties of both Crofer 22 APU and Crofer 22 H steels are evaluated at temperatures of 25oC to 800oC. Creep properties of the given steels are evaluated by constant-load tests at 650oC to 800oC. Several creep lifetime models are applied to correlate the creep rupture time with applied stress or minimum creep rate. Comprehensive comparisons between Crofer 22 APU and Crofer 22 H steels are made on the tensile strength and creep resistance so as to characterize the influence of additions of refractory elements (Nb and W). Out-of-phase TMF tests as well as TMF-creep interaction tests under various combinations of cyclic mechanical and thermal loadings are conducted at a temperature range of 25oC-800oC for Crofer 22 H to study its long-term durability for applications in pSOFCs. Experimental results show the variation of yield strength with temperature in Crofer 22 APU can be described by a sigmoidal curve for different deformation mechanisms. According to the creep stress exponent, activation energy, and microstructural observations, a diffusion-controlled dislocation creep mechanism is involved in the creep behavior of Crofer 22 APU steels at 650oC-800oC, while a power-law dislocation creep mechanism interacting with an in-situ precipitation strengthening mechanism is involved in the creep behavior of Crofer 22 H steels at 650oC-800oC. A significantly improved tensile and creep strength of Crofer 22 H over Crofer 22 APU for pSOFC interconnect is observed and attributed to a precipitation strengthening effect of the Laves phase. A significant coarsening of the Laves phase is responsible for a reduced improvement of creep resistance in Crofer 22 H at the low-stress, long-term region of 800oC. In addition, creep rupture time of the Crofer 22 APU and Crofer 22 H steels can be described by a Monkman-Grant relation. The relation between creep rupture time and normalized stress for both steels is well fitted by a universal simple power law for all of the given testing temperatures. Larson-Miller relationship is also applied and shows good results in correlating the creep rupture time with applied stress and temperature for both steels. Fractographic and microstructural observations indicate a ductile, dimpled fracture pattern with considerable necking is identified for the Crofer 22 APU and Crofer 22 H specimens after creep test. Experimental results of Crofer 22 H steels under TMF loadings show the number of cycles to failure for non-hold-time TMF loading is decreased with an increase in the minimum stress applied at 800oC. There is very little effect of maximum stress applied at 25oC on the number of cycles to failure. The non-hold-time TMF life is dominated by a fatigue mechanism involving cyclic high-temperature softening plastic deformation. A hold-time of 100 h for the minimum stress applied at 800oC causes a significant drop of number of cycles to failure due to a synergistic action of fatigue and creep. Creep and creep-fatigue interaction mechanisms are the two primary contributors to the hold-time TMF damage. The creep damage ratio in the hold-time TMF damage is increased with a decrease in applied stress at 800oC and an increase in number of cycles to failure.
¡@ |
|
|