¤¤¤åºK­n¡G

¡@

¥»¬ã¨s¥D¦®¦b±´°Q©TºA®ñ¤Æª«¿U®Æ¹q¦À(SOFC)¥ÎGC-9«Ê¸Ë¬Á¼þ³³²¡©Mª÷Äݳs±µªO¤£ù׿û(Crofer 22 H)»PGC-9«Ê¸Ë¬Á¼þ³³²¡©M³³²¡¹q·¥ªO(PEN)±µ¦X¥ó¤§¤¶­±¯}µõªý§Ü¤Î¯}Ãa¼Ò¦¡¡CÂǥѻs§@¥|´Ú¤T©úªv¸Õ¤ù¡A¸g¤£¦P®É®Ä³B²z¦b¤£¦P·Å«×¤U(25oC-800oC)´ú¸Õ¡AÂÇ¥Hµû¦ô¤£¦P·Å«×»P®É®Ä³B²z¹ï±µ¦X¥ó¤¶­±¯}µõªý§Üªº¼vÅT¡C

¹êÅçµ²ªGÅã¥Ü¡A¸g¹L100¤p®É®É®Ä³B²z«á¤§«Ê¸Ë¬Á¼þ³³²¡»Pª÷Äݳs±µªO¤§±µ¦X¤¶­±¯}µõªý§Ü»P®É®Ä³B²z«e¦b¤£¦P·Å«×¤U¨ÃµL©úÅ㤧®t²§¡C¦Ü©ó¸g¹L1000¤p®É®É®Ä³B²z«á¤§¤¶­±¯}µõªý§Ü»P¸g¹L100¤p®É³B²z«á¸Õ¤ù¦b¬Û¦P·Å«×¤U¦³¨Ç³\®t²§¡A±À´ú»P¬Á¼þÂà¤Æ·Å«×·|¦]¬°®É®Ä³B²z®É¶¡¼W¥[¦Ó´£°ª¦³Ãö¡AµM¦ÓÀHµÛ·Å«×ÅܤƪºÁͶըõL©úÅ㤧®t²§¡C¦b«Ç·Å¦Ü700oC¶¡¡A¤¶­±¯}µõªý§Ü·|ÀHµÛ·Å«×¼W¥[¦Ó´£°ª¡A¥B¯}µõªý§Ü³Ì¤j­Èµo¥Í¦b700oC ¡A¦¹¤D700oC°ª©óGC-9¤§¬Á¼þÂà¤Æ·Å«×¡A¨ÏGC-9¦³©úÅ㪺ÂHº¢²{¶H¡A­P¨ÏµõÁ_¸ó¾ô®ÄÀ³µo¥Í¡F¦b700oC¦Ü800oC«h·|ÀHµÛ·Å«×¼W¥[¦Ó¤U­°¡A¥D­n¬O¦]¬°¸ó¾ô®ÄÀ³¼vÅT¤U­°¥B750oC°ª©ó¬Á¼þ³n¤Æ·Å«×¡A¬Á¼þ¬y°Ê©Ê¤j¼W©Ò­P¡CÃö©ó¤T¼h¤T©úªv¸Õ¤ù¤§«Ê¸Ë¬Á¼þ³³²¡»P³³²¡¹q·¥ªO±µ¦X¥ó¤§¤¶­±¯}µõªý§Ü¡A¶È¦b«Ç·Å¤U§¹¦¨´ú¸Õ¡AµõÁ_·|ªuµÛ¤¶­±¦¨ªø¡AµM¦Ó¦b¨ä¥L°ª·Å¤U¡AµõÁ_¬Òª½±µ¬ï¹L³³²¡¹q·¥ªO¨Ã¥¼ªuµÛ¤¶­±¦¨ªø¡C¹êÅçµ²ªGÅã¥Ü¡A¦b«Ç·Å¤U¡A¤¶­±¯}µõªý§Ü¸g¹L100¤p®É®É®Ä³B²z«á¦³©úÅ㪺´£¤É¡C

¥Ñ·Lµ²ºc¤Î¯}Â_­±¤ÀªRÅã¥Ü¡A«Ê¸Ë¬Á¼þ³³²¡»Pª÷Äݳs±µªO¤¶­±¦³¨âºØ¥D­n¯}Ãa¼Ò¦¡¡C²Ä¤@¡A²æ¼h²{¶Hµo¥Í¦b¬Á¼þ³³²¡°ò§÷»P»Ì»Ä¾X¼h¤§¬É­±¡C²Ä¤G¡A²æ¼h²{¶Hµo¥Í©ó»Ì»Ä¾X¼h¤§¤º¡CµM¦Ó¦b®É®Ä³B²z¸Õ¤ù¤§¥~³ò°ª®ñ¤Æ°Ï°ì¡A¦b700oC¥H¤Wªº´ú¸Õ·Å«×¡AµõÁ_«h·|¦b¬Á¼þ³³²¡°ò§÷¤º¦¨ªø¡C¹ï©ó«Ê¸Ë¬Á¼þ³³²¡»P³³²¡¹q·¥ªO¤¶­±¡AµõÁ_©ó³³²¡¹q·¥ªO»P¬Á¼þ³³²¡°ò§÷¤§¤¶­±¥H¤Î¦b¬Á¼þ³³²¡°ò§÷¸Ì¦¨ªø¡C

¥t¥~¡AÂǥѹï¤@´ÚSOFC¹q¦À°ï¶i¦æ¨ã¦³¤¶­±µõÁ_¤§¦³­­¤¸¯À¼öÀ³¤O¼ÒÀÀ¤ÀªR¡A¥B±N­pºâ©Ò±o¤§¶ê§ÎµõÁ_¦yºÝ¦b¯S©w¼ÒºAI¤Î¼ÒºAII¤ñ¨Ò¨¤¤§À³ÅܯàÄÀ©ñ²v»P¹êÅç©Ò±o¤§¤¶­±¯}µõªý§Ü¤ñ¹ï¡Aµo²{¸Ó´ÚSOFC¹q¦À°ï©Ò¯à®e³\³Ì¤jªº¤¶­±µõÁ_©Î¯Ê³´¤Ø¤o¬°70 mm¡C

Abstract¡G

       

     The interfacial fracture energy of glass-ceramic (GC-9)/metallic interconnect (Crofer 22 H) and glass-ceramic/PEN joints for solid oxide fuel cell (SOFC) stack is investigated using a four-point bending test technique.  The interfacial fracture energy is determined at room temperature, 650 oC, 700 oC, 750 oC, 800 oC by testing four types of sandwich-like specimens.  The effects of temperature and aging treatment on the interfacial fracture energy are studied.

¡@

     A 100 h-aging treatment does not significantly influence the interfacial fracture energy of glass-ceramic/metallic interconnect joint.  Compared with that of 100 h-aged condition, a difference is found for the 1000 h-aged interfacial fracture energy at each given temperature.  It may result from an increase in glass transition temperature after a longer aging time.  However, the variation trend of interfacial fracture energy with temperature is similar for all the given aged conditions.  The interfacial fracture energy increases with temperature from room temperature to a peak value at 700 oC.  As 700 oC is higher than the glass transition temperature (668 oC), a greater viscosity takes place and causes a crack bridging phenomenon.  The interfacial fracture energy decreases at 750 oC due to a softening behavior of GC-9 as the temperature is higher than the softening temperature (745 oC).  The interfacial fracture energy decreases further at 800 oC as a result of flowability of GC-9.  For the glass-ceramic/PEN joint in a three-layer specimen, interfacial cracking takes place only when the test is conducted at room temperature.  At elevated temperatures, crack penetrates though PEN directly leading to specimen fracture without interfacial cracking.  Comparison of the interfacial fracture energy for non-aged and 100 h-aged specimens indicates the interfacial fracture energy increases after a 100 h-aging treatment.

¡@

     Through analysis of interfacial microstructure, two types of fracture modes are identified for the glass-ceramic/metallic interconnect joint.  Firstly, delamination takes place at the interface between the glass-ceramic substrate and chromate layer.  Secondly, delamination occurs within the chromate layer.  However, for experiments at temperature of 700 oC and above, delamination at the peripheral edges of the fracture surface takes place within the glass-ceramic substrate.  For the glass-ceramic/PEN joint, crack propagates along the interface between GC-9 and PEN and also kinks into the glass-ceramic layer.

¡@

     A simulation through finite element analysis is conducted to calculate the energy release rate at the crack front of an interfacial circular crack placed at the highly stressed region in a prototypical SOFC stack subjected to thermal stresses.  Comparison of the simulation and experimental results at specific mixity angles between Mode I and Mode II indicates that the critical crack or defect size at the interface of the joint of GC-9 glass-ceramic sealant and Crofer 22 H interconnect in the given SOFC stack is 70 mm.

    

¡@